Biofilter efficiency and ultraviolet ligth on water quality and mortality in Litopenaeus vannamei culture

Authors

  • Pablo González-Alanis Autonomous University of Tamaulipas image/svg+xml
  • Kevin M. Fitzsimmons University of Arizona image/svg+xml
  • Sandra Elizabeth Hernández-Mendez Autonomous University of Tamaulipas image/svg+xml
  • Liduvina Vázquez-Ruiz Autonomous University of Tamaulipas image/svg+xml
  • Ana Lucía Urbizu-Gonzalez Autonomous University of Tamaulipas image/svg+xml
  • Jaime Luis Rábago-Castro Autonomous University of Tamaulipas image/svg+xml
  • Gabriela Leticia Arvizu-Cruz Autonomous University of Tamaulipas image/svg+xml
  • Mirelly Venecia Mireles-Villanueva Autonomous University of Tamaulipas image/svg+xml

DOI:

https://doi.org/10.19136/ta.a3n2.5755

Keywords:

biofilter, ultraviolet ligth, nitrifying bacteria, Litopenaeus, Litopenaeus vannamei, water quality

Abstract

La calidad del agua es una de las principales causas del fracaso en los proyectos de cultivo de camarón. El objetivo de esta investigación fue evaluar la eficiencia de un sistema de biofiltración. Para ello se evaluaron parámetros como nitrógeno amónico, pH, acidez, alcalinidad y mortalidad. Se utilizaron seis estanques de 1 ha con 1,8 m de profundidad de agua, cubiertos con techo plástico (invernaderos), en los cuales se sembraron cuatro millones doscientos mil juveniles de camarón de la especie Litopenaeus vannamei. Tres estanques fueron equipados con una bomba de agua y sistemas FINI-FALCO. El sustrato utilizado en el FINI-FALCO fueron conchas de ostra y en cada tanque se añadió cloruro de amonio a una concentración de 1 ppm cada 24 h/L durante 20 días. Los resultados demostraron diferencias significativas (P < 0,05) en pH, amonio, nitrito y nitrato entre los tanques después de 28 días. El uso de FINI-FALCO reduce los niveles de amonio y nitrito, y las fluctuaciones en el pH observadas se debieron al proceso de nitrificación. Las mortalidades entre los tratamientos se redujeron, pero no fueron significativas.

Downloads

Download data is not yet available.

References

Antileo, C., Aspé, E., Urrutia, H., Zaror, C. & Roeckel, M. (2002) Nitrifying biomass acclimation to high ammonia concentration. Journal of Environmental Engineering, 128(4): 367–375. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2002)128:4(367)

Burford, M.A. & Lorenzen, K. (2004) Modeling nitrogen dynamics in intensive shrimp ponds: the role of sediment remineralization. Aquaculture, 229(12): 129–145. DOI: https://doi.org/10.1016/S0044-8486(03)00358-2

Calvachi, G.L. (2015) Remoción de sólidos en aguas residuales de producción intensiva de trucha en un sistema de recirculación cerrado. Revista UNIMAR, 33(1): 229–236.

Carbó Bacaicoa, Ricard. (2012) Integración de la técnica de depuración de aguas residuales mediante humedales con los sistemas de recirculación para la acuicultura. AquaTIC, 37(1): 25–31.

Casciotti, K.L., Buchwald, C., Santoro, A.E. & Frame, C. (2011) Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment. Methods in Enzymology. 486: 253–280. DOI: https://doi.org/10.1016/B978-0-12-381294-0.00011-0

Cheng, W., Hsiao, I.S. & Chen, J.C. (2004) Effect of nitrite on immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Diseases of Aquatic Organisms. 60(2): 157–164. DOI: https://doi.org/10.3354/dao060157

Chun-Hung, L. & Jiann-Chu, C. (2004) Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish and Shellfish Immunology. 16(3): 321–334. DOI: https://doi.org/10.1016/S1050-4648(03)00113-X

Collazos-Lasso, L.F. & Arias-Castellanos, J.A. (2015) Fundamentos de la tecnología biofloc (BFT). Una alternativa para la piscicultura en Colombia: una revisión. Orinoquia. 19(1): 77–86. DOI: https://doi.org/10.22579/20112629.341

Coronado, G.C., Avilés, G.L., Tapia, F.J.A., Amaya, O.M., Teresa, M. & Barragán, C. (2014) Acondicionamiento de un reactor nitrificante para el tratamiento de efluentes pesqueros. 2do. Congreso nacional de tecnologías y ciencias ambientales. VI Congreso Regional de Ciencias Ambientales, México. Available from: https://www.itson.mx/publicaciones/Documents/recnat/memoriassegundocongreso.pdf#page=14 [Accessed 27th March 2024].

Del’Duca, A., Cesar, D.E., Freato, T.A., Azevedo, R.d.S., Rodrigues, E.M. & Abreu, P.C. (2019) Variability of the nitrifying bacteria in the biofilm and water column of a recirculating aquaculture system for tilapia (Oreochromis niloticus) production. Aquaculture Research. 50(9): 2537–2544. DOI: https://doi.org/10.1111/are.14211

Epp, M.A., Ziemann, D.A. & Schell, D.M. (2002) Carbon and nitrogen dynamics in zero-water exchange shrimp culture as indicated by stable isotope tracers. Aquaculture Research. 33(11): 839–846. DOI: https://doi.org/10.1046/j.1365-2109.2002.00720.x

Food and Agriculture Organization (FAO). (2014) Small-scale aquaponic food production: integrated fish and plant farming. FAO technical document in fisheries. FAO, Rome. Available from: https://www.fao.org/documents/card/en?details=90bb6bfe-1ac3-4280-857e [Accessed 27th March 2024].

Fuentes, V.F.I. 2015. Estudio de factibilidad técnico-económica de la implementación de un sistema de cultivo acuapónico de pequeña y mediana escala en la Octava Región. Ph.D. Thesis, Universidad Católica de la Santísima Concepción, Concepción.

Gallego-Alarcón, I., & García-Pulido, D. (2017) Remoción de nitrógeno amoniacal total en un biofiltro: percolador-columna de arena. Tecnología y Ciencias del Agua. 8(1): 81–93. DOI: https://doi.org/10.24850/j-tyca-2017-01-06

Gross, A., Nemirovsky, A., Zilberg, D., Khaimov, A., Brenner, A., Snir, E., et al. (2003) Soil nitrifying enrichments as biofilter starters in intensive recirculating saline water aquaculture. Aquaculture, 223(1): 51–62. DOI: https://doi.org/10.1016/S0044-8486(03)00067-X

Han, Y. & Boyd, C.E. (2018) Effect of organic matter concentration on agricultural limestone dissolution in laboratory soil–water systems. Aquaculture Research. 49(10): 3451–3455. DOI: https://doi.org/10.1111/are.13810

Luo, H., Huang, G., Fu, X., Liu, X., Zheng, D., Peng, J., et al. (2013) Waste oyster shell as a kind of active filler to treat the combined wastewater at an estuary. Journal of Environmental Science. 25(10): 2047-2055. DOI: https://doi.org/10.1016/S1001-0742(12)60262-9

Melgar Valdés, C.E., Barba Macías, E., Álvarez-González, C.A., Tovilla Hernández, C. & Sánchez, A.J. (2013) Efecto de microorganismos con potencial probiótico en la calidad del agua y el crecimiento de camarón Litopenaeus vannamei (Decapoda: Penaeidae) en cultivo intensivo. Revista de Biología Tropical. 61(3): 1215–1228. DOI: https://doi.org/10.15517/rbt.v61i3.11936

Menasveta, P. (2002) Improved shrimp growout systems for disease prevention and environmental sustainability in Asia. Reviews in Fisheries Science. 10(4): 391–402. DOI: https://doi.org/10.1080/20026491051703

Moriarty, D.J. (1999) Disease control in shrimp aquaculture with probiotic bacteria. Proceedings of the 8th International Symposium on Microbial Ecology, Halifax, Canada. https://ag.arizona.edu/azaqua/tilapia/tilapia_shrimp/moriarty.PDF [Accessed 27th March 2024].

Mosquera-Corral, A., Campos, J.L., Sánchez, M., Méndez, R. & Lema, J.M. (2003) Combined system for biological removal of nitrogen and carbon from a fish cannery wastewater. International Journal of Environmental Engineering. 129(9): 826–833. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2003)129:9(826)

Ochoa, V.C.A. (2004) Programa de bioseguridad para la cría de camarón orgánico Litopenaeus vannamei en cautiverio. Revista AquaTIC. 21: 42–51.

Otoshi, C., Arce, S. & Moss, S. (2003) Growth and reproductive performance of broodstock shrimp reared in a biosecure recirculating aquaculture system versus a flow-through pond. Aqua Engineering. 29(3): 93–107. DOI: https://doi.org/10.1016/S0144-8609(03)00048-7

Sansanayuth, P., Phadungchep, A., Ngammontha, S., Ngdngam, S., Sukasem, P., Hoshino, H. & Ttabucanon, M. (1996) Shrimp pond effluent: pollution problems and treatment by constructed wetlands. Water Science and Technology. 34(11): 93–98. DOI: https://doi.org/10.2166/wst.1996.0267

Schramm, A. (2003) In situ analysis of structure and activity of the nitrifying community in biofilms, aggregates, and sediments. Geomicrobiology Journal. 20(4): 313–333. DOI: https://doi.org/10.1080/01490450303893

Solórzano, A.A.A. (2017) Cultivo intensivo de Andinoacara rivulatus (vieja azul) con diferenciación en la cantidad de alimentos en un sistema cerrado de recirculación de agua. Universidad de Guayaquil, Guayaquil. https://repositorio.ug.edu.ec/server/api/core/bitstreams/67d2fef5-0994-4eb2-b885-c92895156c7d/content -an introduction and examples of current applications. Aqua Engineering. 28(1): 21-

Summerfelt, S.T. (2003) Ozonation and UV irradiation 36

Technologies and Practices for Small Agricultural Producers (TECA-FAO). (2015) Management of the aquaponic systems. FAO, Rome. https://www.fao.org/3/ca4027en/ca4027en.pdf [Accessed 27th March 2024].

Tracy, C.R., Nussear, K.E., Esque, T.C., Dean-Bradley, K., Tracy, C.R., DeFalco, L.A., et al. (2006) The importance of physiological ecology in conservation biology. Integrative and Comparative Biology. 46(6): 1191–1205. DOI: https://doi.org/10.1093/icb/icl054

Wang, M., Yi, M., Lu, M., Zhu, X., Chen, G., Gao, F., et al. (2019) Effect of in situ sediment remediation combining oyster shells and bottom microporous aeration on nitrogen removal and microbiota. Aquaculture Research. 50(1): 331–341. DOI: https://doi.org/10.1111/are.13907

White, B.L., Schofield, P.J., Poulos, B.T. & Lightner, D.V. (2002) A laboratory challenge method for estimating taura syndrome virus resistance in selected lines of Pacific white shrimp Litopenaeus vannamei. Journal of the World Aquaculture Society. 33(3): 341–348. DOI: https://doi.org/10.1111/j.1749-7345.2002.tb00510.x

Xie, Y., Biswas, N. & Bewtra, J. K. (1999) Nitrification and denitrification in water and soil environments. International Journal of Environmental Studies. 56(4): 451–474. DOI: https://doi.org/10.1080/00207239908711216

Yancheva, V., Velcheva, I., Stoyanova, S. & Georgieva, E. (2015) Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: a review. Applied Ecology and Environmental Research. 14(1): 47–75. DOI: https://doi.org/10.15666/aeer/1401_047075

Downloads

Published

2026-02-13

Issue

Section

Scientific article

How to Cite

González-Alanis, P., Fitzsimmons, K. M., Hernández-Mendez, S. E., Vázquez-Ruiz, L., Urbizu-Gonzalez, A. L., Rábago-Castro, J. L., Arvizu-Cruz, G. L., & Mireles-Villanueva, M. V. (2026). Biofilter efficiency and ultraviolet ligth on water quality and mortality in Litopenaeus vannamei culture. Tropical Aquaculture, 3(2). https://doi.org/10.19136/ta.a3n2.5755

Most read articles by the same author(s)