El Hermafroditismo en peces, una oportunidad en la acuicultura
DOI:
https://doi.org/10.19136/ta.a2n1.5734Palabras clave:
Hermaphroditism, Aquaculture, ReproductionResumen
El hermafroditismo se define como una estrategia reproductiva con presencia de las funciones masculina y femenina en el mismo individuo. Esto puede ocurrir de forma simultánea o secuencial, y está presente en las principales divisiones taxonómicas de las plantas y es común en varios Metazoos. En los peces, estas transiciones sexuales se producen debido a compensaciones entre crecimiento, supervivencia y reproducción, y se ha documentado en más de 450 especies. En acuicultura, el manejo de las especies que cambian de sexo se complica por el hecho de que no se conocen bien el momento, ni las causas del cambio de sexo en los peces hermafroditas, lo que complica la planificación de los eventos reproductivos y el cumplimiento de los objetivos de producción. Sin embargo, la aplicación de procesos biotecnológicos como la reversión del sexo mediante esteroides podría suponer una venta ja a la hora de obtener hembras o machos del sexo "deseado" para obtener gametos y, por tanto, hacer más eficiente el uso de las instalaciones acuícolas.
Descargas
Referencias
Arnott G & Elwood RW (2009) Gender differences in aggressive behaviour in convict cichlids. Animal Behaviour 78(5):1221–1227. doi:10.1016/j.anbehav.2009.08.005
Benvenuto C, Coscia I, Chopelet J, Sala-Bozano M & Mariani S (2017). Ecological and evolutionary consequences of alternative sex-change pathways in fish. Scientific Reports 7(1). https://doi.org/10.1038/s41598-017-09298-8
Bhandari RK, Komuro H, Nakamura S, Higa M & Nakamura M (2003). Gonadal Restructuring and Correlative Steroid Hormone Profiles during Natural Sex Change in Protogynous Honeycomb Grouper (Epinephelus merra). Zoological Science, 20(11), 1399–1404. https://doi.org/10.2108/zsj.20.1399
Bonduriansky R (2014) Sexual conflict, life span, and aging. Cold Spring Harbor Perspectives in Biology, 6(8). https://doi.org/10.1101/cshperspect.a017566
Budd AM, Banh QQ, Domingos JA & Jerry DR (2015) Sex control in fish: approaches, challenges and opportunities for aquaculture. Journal of Marine Science and Engineering 3(2):329-355.
Capel B (2017) Vertebrate sex determination: Evolutionary plasticity of a fundamental switch. Nature Reviews Genetics 18(11):675–689. https://doi.org/10.1038/nrg.2017.60
Chong T, Collins JJ, Brubacher JL, Zarkower D & Newmark PA (2013) A sex-specific transcription factor controls male identity in a simultaneous hermaphrodite. Nature Communications 4. https://doi.org/10.1038/ncomms2811
Davison A (2006) The ovotestis: An underdeveloped organ of evolution. In BioEssays (Vol. 28, Issue 6, pp. 642–650). https://doi.org/10.1002/bies.20424
Damsgård B & Huntingford F (2012) Fighting and Aggression. Aquaculture and Behavior 248–285. doi:10.1002/9781444354614.ch9.
Delph LF (2009) Sex Allocation: Evolution to and from Dioecy. In Current Biology (Vol. 19, Issue 6). https://doi.org/10.1016/j.cub.2009.01.048
Freedman AA & Noakes DLG (2002) Why are there no really big bony fishes? A point-of-view on maximum body size in teleosts and elasmobranchs. Reviews in Fish Biology and Fisheries 403–416.
Ghiselin MT (1969) The evolution of hermaphroditism among animals. The Quarterly Review of Biology 44:189–208. http://www.journals.uchicago.edu/t-and-c
Guiguen Y, Cauty C, Fostier A, Fuchs J & Jalabert B (1994) Reproductive cycle and sex inversion of the seabass, Lates calcarifer, reared in sea cages in French Polynesia: histological and morphometric description. Environmental Biology of Fishes 39:231–247.
Heule C, Göppert C, Salzburger W, & Böhne A (2014) Genetics and timing of sex determination in the East African cichlid fish Astatotilapia burtoni. BMC Genetics 15(1). https://doi.org/10.1186/s12863-014-0140-5
Kazancioĝlu E & Alonzo SH (2010) A comparative analysis of sex change in Labridae supports the size advantage hypothesis. Evolution 64(8):2254–2264. https://doi.org/10.1111/j.1558-5646.2010.01016.x
Kiontke K, Gavin NP, Raynes Y, Roehrig C, Piano F & Fitch DHA (2004) Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. PNAS 101(24): 9003–9008. www.treebase.org.
Kuwamura T, Sunobe T, Sakai Y, Kadota T & Sawada K (2020) Hermaphroditism in fishes: an annotated list of species, phylogeny, and mating system. Ichthyological Research 67:341-360.
Le Page Y, Diotel N, Vaillant C, Pellegrini E, Anglade I, Mérot Y & Kah O (2010) Aromatase, brain sexualization and plasticity: The fish paradigm. European Journal of Neuroscience 32(12):2105–2115. https://doi.org/10.1111/j.1460-9568.2010.07519.x
Leonard JL (2013) Williams’ paradox and the role of phenotypic plasticity in sexual systems. Integrative and Comparative Biology 53(4):671–688. https://doi.org/10.1093/icb/ict088
Leonard JL (2018) The Evolution of Sexual Systems in Animals. In Transitions Between Sexual Systems (pp. 1–58). Springer International Publishing. https://doi.org/10.1007/978-3-319-94139-4_1
Munday PL, Buston PM & Warner RR (2006) Diversity and flexibility of sex-change strategies in animals. In Trends in Ecology and Evolution (Vol. 21, Issue 2, pp. 89–95). https://doi.org/10.1016/j.tree.2005.10.020
Pla SQ (2019) Evolutionary transitions, environmental correlates and life-history traits associated with the distribution of the different forms of hermaphroditism in fish [Tesis doctoral]. Universidad Autónoma de Barcelona.
Pla S, Maynou F & Piferrer F (2021) Hermaphroditism in fish: incidence, distribution and associations with abiotic environmental factors. Reviews in Fish Biology and Fisheries 31(4):935–955. https://doi.org/10.1007/s11160-021-09681-9
Puurtinen M (2002) Mate Search Efficiency Can Determine the Evolution of Separate Sexes and the Stability of Hermaphroditism in Animals.The American Naturalist 160(5):665–660. doi: 10.1086/342821. PMID: 18707514
Réale D, Garant D, Humphries MM, Bergeron P, Careau V & Montiglio PO (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 365, Issue 1560, pp. 4051–4063). Royal Society. https://doi.org/10.1098/rstb.2010.0208
Sadovy YM & Liu M (2008) Functional hermaphroditism in teleosts. In Fish and Fisheries (Vol. 9, Issue 1, pp. 1–43). https://doi.org/10.1111/j.1467-2979.2007.00266.x
Schärer L (2009) Tests of sex allocation theory in simultaneously hermaphroditic animals. Evolution 63(6):1377–1405. https://doi.org/10.1111/j.1558-5646.2009.00669.x
Thomas JT, Liu H, Todd EV & Gemmell NJ (2018) Sex change in fish. Encyclopedia of Reproduction 192–197. https://doi.org/10.1016/B978-0-12-809633-8.20555-4
Tomlinson J (1966) The Advantages of Hermaphroditism and Parthenogenesis. J. Theoret. Biol 11:54–58.
Uller T, Feiner, N, Radersma R, Jackson ISC & Rago A (2020) Developmental plasticity and evolutionary explanations. Evolution and Development 22(1–2):47–55. https://doi.org/10.1111/ede.12314
Warner RR (1975) The adaptive significance of sequential hermaphroditism in animals. American Naturalist 109(965):61–82. https://doi.org/10.1086/282974
Warner RR (1984) Mating Behavior and Hermaphroditism in Coral Reef Fishes. American Scientist 72(2):128–136.
Warner RR & Swearer SE (1991) Social control of sex change in the bluehead wrasse, Thalassoma bifasciatum (Pisces: Labridae). Biological Bulletin 181(2):199–204. https://doi.org/10.2307/1542090
William GC (1975) Sex and evolution. Princeton University Press.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Autores & UJAT
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.